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Abstract. Moving-boundary algorithms for the Direct Simulation Monte Carlo (DSMC) method are investigated for a 

microbeam that moves toward and away from a parallel substrate. The simpler but analogous one-dimensional situation 

of a piston moving between two parallel walls is investigated using two moving-boundary algorithms. In the first, 

molecules are reflected rigorously from the moving piston by performing the reflections in the piston frame of reference. 

In the second, molecules are reflected approximately from the moving piston by moving the piston and subsequently 

moving all molecules and reflecting them from the moving piston at its new or old position.  
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INTRODUCTION 

MicroElectroMechanical System (MEMS) devices typically have parts with micron-scale dimensions that move 

through air or other gases at atmospheric or reduced pressures. When a MEMS part moves toward or away from the 

adjacent substrate, the gas in the gap between the part and the substrate is compressed or expanded, respectively, 

which causes gas to flow out of the gap to the ambient environment or vice versa. This gas motion dissipates energy, 

so its effect on the dynamics of the MEMS part is called “squeeze-film damping” [1-5].  

Since the mean free path is not negligible compared to MEMS geometric features, noncontinuum gas effects 

must be accurately treated. Many investigators have attempted to develop “compact” squeeze-film damping models 

compatible with ordinary-differential-equation MEMS dynamics models [6-10]. Although some experimental results 

exist [11-13], their limited precision often precludes development or assessment of such models.  

The Direct Simulation Monte Carlo (DSMC) method of Bird [14-15] is capable of simulating noncontinuum gas 

flows to high accuracy. However, DSMC simulations have generally considered fixed geometries, whereas many 

MEMS systems have moving geometries. Here, a microbeam oscillating in an out-of-plane fashion near the 

substrate is considered, and DSMC moving-boundary algorithms are investigated for the analogous but simpler 

geometry of a piston oscillating between two parallel walls (see Figure 1).  

               

FIGURE 1. Left: Oscillating microbeam anchored at dimple. Middle: Microbeam cross section. Right: Piston geometry.  



MOVING-BOUNDARY DSMC ALGORITHMS 

Two moving-boundary DSMC algorithms are investigated in the context of the one-dimensional piston problem 

described in the previous section. The domain extends from 0x =  to x L= , and the piston has thickness H  in the 

x  direction (see Figure 1). This domain is spanned by 
x
N  uniform cells of length 

x
x L N∆ = . Uniform cells are 

not required by the algorithms but are chosen for convenience. Although presented in a one-dimensional context, 

many aspects of these algorithms can be generalized to multi-dimensional flows, especially if the object executes 

rigid-body translational motion (i.e., all points on the body surface move with the same velocity vector at each time).  

In both algorithms, the mesh is taken to be fixed throughout time, and the object moves over the mesh cells. 

More specifically, the mesh is not attached to the moving object and does not move or deform based on the object. 

Over the time interval from t  to t t+ ∆ , the object has a constant velocity U  in the x  direction, and the molecules 

have constant velocities 
i
u ,

i
v , and 

i
w  in the x , y , and z  directions, respectively. At time t , the object surfaces 

are at positions 
1
X  and 

2
X , and the molecules are at positions 

i
x  such that all molecules lie outside the object (i.e., 

molecules do not overlap the object): either 
1i

x X<  or 
2i

x X> . The object and the molecules move for a time t∆ , 

and their new positions are 
j j
X X U t= + ∆�  and 

i i i
x x u t= + ∆� . If a molecule satisfies the same test that it satisfied 

prior to moving (i.e., either 
1i

x X< ��  if 
1i

x X< , or 
2i

x X> ��  if 
2i

x X> ), then the molecule remained outside the 

object while moving during the entire time interval, and no reflection needs to be performed. However, if a molecule 

fails the same test that it satisfied prior to moving (i.e., either 
1i

x X≥ ��  if 
1i

x X< , or 
2i

x X≤ ��  if 
2i

x X> ), then the 

molecule crossed the corresponding surface of the object while moving, and a reflection needs to be performed.  

Figure 2 shows the two algorithms used to perform reflections. The first algorithm performs reflections in a 

rigorous manner. The object and molecule velocities are transformed into the object reference frame by subtracting 

the object velocity from the molecule velocity: 
i i
u u U∆ = − , 

i i
v v∆ = , 

i i
w w∆ = . A standard DSMC reflection [14] 

(e.g., a linear combination of diffuse fully accommodating and specular reflections) is performed to yield reflected 

velocities in the object reference frame: 
i
u∆ � , 

i
v∆ � , 

i
w∆ � . These velocities are subsequently transformed back to the 

mesh reference frame: 
i i
u u U= ∆ +� � , 

i i
v v= ∆� � , 

i i
w w= ∆� � . The molecule is then moved at the reflected velocity for 

the remainder of the time step. The second algorithm performs reflections in an approximate manner. The principal 

difference between the approximate and the rigorous algorithms is that the approximate algorithm performs 

reflections with the object surface at its new position at time t t+ ∆  (i.e., at 
1
X�  or 

2
X� ) if the surface is advancing 

into the gas or at its old position at time t  (i.e., at 
1
X  or 

2
X ) if the surface is receding from the gas, rather than at 

the exact reflection position. Since the exact positions at which reflections occur do not have to be determined, the 

approximate algorithm is faster. The approximate algorithm is correct in the limit that the object velocity is much 

smaller than the typical molecule velocity. This condition is often satisfied for MEMS devices in ambient air since 

MEMS components typically have speeds well below the speeds of air molecules (~300 m/s) [8].  

 

 

FIGURE 2. Fixed-mesh moving-boundary algorithms: top, rigorous; bottom, approximate with an advancing surface.  

Dashed lines: surface at start of time step. Solid lines: surface at end of time step. Dotted lines: exact reflection location.  



MOVING-PISTON DSMC SIMULATIONS 

Simulations using the rigorous and approximate fixed-mesh moving-boundary DSMC algorithms are performed 

for the moving-piston situation shown in Figure 1. Two types of piston motion are considered. In the first, the piston 

starts impulsively from rest, moves a prescribed distance at constant velocity, and then halts at this location. In the 

second, the piston oscillates sinusoidally about its initial position at a prescribed frequency.  

The following conditions are common to all simulations. For verification purposes [16], the gas is taken to have 

the properties of argon in Bird [14] except that the molecules undergo hard-sphere collisions. The molecular mass is 
2766.3 10  kgm −= × , the viscosity temperature exponent is 1 2ω = , the angular scattering exponent is 1α = , the 

reference temperature is 
ref

273.15 KT = , the reference viscosity at this temperature is 5

ref
2.117 10  Pa sµ −= × ⋅ , the 

ratio of the infinite-to-first-approximation viscosities is 
1

1.016034µ µ∞ = , and the Boltzmann constant is 
231.380658 10  J/K

B
k −= × , which together yield the viscosity and the hard-sphere diameter [14,16]:  
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Initially, the gas is motionless and at pressure 
init

266.644 Pap =  and temperature 
init

273.15 KT = , which yield a 

number density of 22 3

init init init
7.0704 10  m

B
n p k T −= = × , a density of 3 3

init init
4.6877 10  kg/mmnρ −= = × , a mean 

molecular speed of 1 2

init init
(8 ) 380.59 m/s

B
c k T mπ= = , and a mean free path of 

init init init init
2 23.732 mcλ µ ρ µ= = .  

The gas is confined between two parallel walls located at 0x =  and x L= , where the wall separation is 

1000 mL µ= , the wall temperatures are 
wall

273.15 KT = , and the wall accommodation coefficients are 
wall

1σ = . 

This domain is divided into 100
x
N =  uniform cells of length 10 m

x
x L N µ∆ = = . Each of the cells not initially 

occupied by the piston is filled initially with 510N =  computational molecules. A time step of 910  st −∆ =  is used, 

and an averaging time of 
avg
t t= ∆  is used when field variables are output (i.e., only one time plane is “averaged”). 

These values yield normalized cell-size and time-step values of 
init

0.42x λ∆ =  and 
init init

0.016c t λ∆ = , 

respectively, which indicate well resolved simulations.  

The piston has a thickness 2 20 mH x µ= ∆ =  and is centered at [ ]0 2 500 mX L µ= =  initially. Its two surfaces 

are located at [ ] [ ]1
0 0 490 mX X x µ= − ∆ =  and [ ] [ ]2

0 0 510 mX X x µ= + ∆ =  initially. The piston surface is at 

temperature 
piston

273.15 KT =  and has accommodation coefficient 
piston

0 or 1σ =  (either specular or diffuse fully 

accommodating). The piston center position [ ]X t  is prescribed for all time, and the piston surface positions [ ]1,2
X t  

and the piecewise-constant piston velocity [ ]U t t t↔ +∆  averaged from time t  to time t t+ ∆  (used when 

performing molecular reflections) are given in terms of the piston center position:  

 [ ] [ ]1
X t X t x= −∆ , [ ] [ ]2

X t X t x= + ∆ , [ ] [ ] [ ]( )U t t t X t t X t t↔ +∆ = + ∆ − ∆ .  (2) 

The impulsively started piston has the following piston center position for all time 0t ≥ :  

 [ ] [ ] [ ]min 0 max ,0 ,s sX t X U t X = +  , { }10,100  m/s
s
U = , 0.75 750 m

s
X L µ= = .  (3) 

The piston thus starts at 50% across the domain, moves with constant velocity, and stops at 75% across the domain.  

The oscillating piston has the following piston center position for all time 0t ≥ :  

 [ ] [ ] [ ]0 0
0 sin 2X t X X f tπ= + , 

0
1 MHzf = , 

0 0
1 1 st f µ= = , { }0

10,100  m/sU = , ( )0 0 0
2X U fπ= .  (4) 

These two velocity amplitudes yield corresponding displacement amplitudes of { }0
1.59,15.9  mX µ= , so 

{ }0
0.159,1.59X x∆ =  cells are crossed during each quarter-cycle. Quantities are output 20 times per cycle.  

Simulations terminate at 100 sµ , by which time the gas on both sides of the piston is uniform and motionless. 

The results of the impulsive-piston and oscillating-piston simulations are shown in Figures 3 and 4, respectively. 

Here, velocity values of 100 m/s are referred to as “fast”, and velocity values of 10 m/s are referred to as “slow”.  



 

 

 

FIGURE 3. Pressure and temperature profiles for the impulsively started piston at indicated conditions.  



 

FIGURE 4. Pressure and energy-flux histories on both piston surfaces for the oscillating piston.  

Figure 3 shows pressure and temperature profiles at selected times produced by the impulsively started piston for 

the fast and slow velocities. The profiles produced by the rigorous and approximate algorithms are essentially the 

same except for stochastic noise, so only the profiles from the rigorous algorithm are shown. Three combinations of 

velocity and accommodation coefficient are shown in this figure: the fast specular piston, the fast diffuse piston, and 

the slow diffuse piston. Although not identical, the profiles from the slow diffuse and specular pistons are 

qualitatively similar, so the latter profiles are not shown.  

In the fast cases, a shock wave is generated by the advancing piston surface, and a rarefaction wave is generated 

by the receding piston surface. Initially, these two waves emerge from the Knudsen layers adjacent to the piston 

surfaces, which have thicknesses comparable to the shock thickness (here, ~10 mean free paths). Subsequently, the 

pressure and temperature jumps across these two waves approach their corresponding theoretical values [17]. Since 

each half of the domain is only about 20 mean free paths long at first, these waves are only marginally developed 

before they reach the Knudsen layers adjacent to the end walls of the domain and are subsequently reflected. In the 

shock wave, the temperature front slightly precedes the pressure front, as expected [14].  

Although the gas temperatures adjacent to the fast specular piston are close to the shock and rarefaction values, 

the gas temperatures adjacent to the fast diffuse piston are close to the piston temperature. The thermal boundary 

layers produced in the gas by the diffuse piston weaken both waves. At long times relative to the piston stopping 

time (100 µs vs. 2.5 µs), the gas comes to rest with uniform temperature at the wall temperature and uniform 

pressures at the pressures corresponding to this temperature and the new volumes (i.e., normalized pressures of 

49 74 0.662≈  for the rarefaction side and 49 24 2.042≈  for the shock side).  

In the slow case, the waves generated from the piston surface are very weak, so the pressure is nearly uniform 

while the piston is moving (0-25 µs) and after the piston has stopped (after 25 µs). The temperature is slightly above 

the initial/wall value on the compression side and is slightly below the initial/wall value on the expansion side while 

the piston is moving. At long times, the pressure and temperature distributions are the same as for the fast cases 

because the piston undergoes the same total displacement in all cases.  

Figure 4 shows pressure and energy-flux histories on both surfaces for the fast and slow oscillating pistons. As 

for the impulsive piston, the histories produced by the rigorous and approximate algorithms are essentially the same 

except for stochastic noise, so only the histories from the rigorous algorithm are shown. Also as above, the histories 

from the specular piston are not shown because they are qualitatively similar to the corresponding histories from the 

diffuse piston. This similarity applies not only to the pressure histories but also to the energy-flux histories because 

the latter are dominated by pressure-velocity power rather than by heat conduction. The slow cases produce linear 

waves, so their histories are essentially symmetric about the average values. The fast cases produce nonlinear waves, 

so the half-cycles of the histories associated with advancing or receding surfaces differ significantly and are not 

symmetric about the average values. In particular, averaging the total energy flux to the piston over one full cycle 

yields a negative value, which indicates that energy must be continually input to the piston to sustain the oscillation.  



CONCLUSIONS 

Moving-boundary algorithms for the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics 

have been investigated. The motivation for this effort involves simulation of gas flows in opening and closing gaps 

for MEMS (MicroElectroMechanical Systems) devices in air. Two algorithms have been investigated: a rigorous 

algorithm, in which computational molecules are reflected from the exact points at which their trajectories intersect 

the moving object, and an approximate algorithm, in which computational molecules are reflected from the envelope 

formed by the object as it moves over one time step. The results from these algorithms agree closely when the object 

velocity is modest with respect to molecular velocities. Future efforts will focus on developing and implementing 

two-dimensional algorithms corresponding to the one-dimensional algorithms that are investigated here.  

All of the examples presented here use a large number of molecules per cell to ensure that the profiles and 

histories from the simulations have extremely low noise relative to the signals of interest for verification purposes. 

However, the goal in many applications is to determine the gas force on an oscillating MEMS device and the power 

required to sustain its motion (or, correspondingly, the rate at which its motion decays). In this situation, the number 

of molecules per cell and the total number of molecules in a simulation can be reduced by orders of magnitude, and, 

when required, noise reduction can be achieved by averaging over many cycles or by ensemble averaging.  
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